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LETTER TO THE EDITOR 

Phase transitions in a highly anisotropic Heisenberg 
chain with staggered interaction 
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I. Department of Physics, Fudan University, Shanghai 201903, People’s Republic of 
China 
$ Centre of Theoretical Physics (CCAST, World Laboratory), Beijing, People’s Republic 
of China 

Received 16 June 1989 

Abstract. The behaviour of the antiferromagnetic nearest-neighbour spin-b Heisenberg 
chain is studied in a space of interactions that include exchange anisotropy (CY), bond 
alternation (A), and spin-lattice interaction ( y ) .  Using the coherent state method for spin, 
we analyse magnetically driven lattice instabilities and find that phase transitions occur under 
the condition of large bond alternation or strong spin-lattice coupling, which means that 
more staggered interactions make it  easy for phase transitions to take place. The three-phase 
diagram and the tri-critical point are obtained. 

The interest in models that deal with many-body problems in low-dimensional systems 
has been recently revived because of the discovery of high-T, superconductivity [ 11. The 
anisotropic Heisenberg chain with antiferromagnetic coupling is one of them. For a 
strictly one-dimensional system, there can be no phase transition at a finite temperature 
because of fluctuations. But a one-dimensional system can undergo a phase transition 
when coupled to phonons [ 2 ] ,  In this Letter we consider a lattice of a spin-; linear highly 
anisotropic antiferromagnetic Heisenberg chain with a phenomenological spin-lattice 
coupling to investigate the lattice instabilities and phase transitions. 

It is physically evident that the antiferromagnetic order, which has a periodicity of 
twice the lattice parameter, will couple predominantly with the lattice mode of the same 
wavelength. Thus, since we are primarily interested in qualitative trends, we can drop 
all the other modes and write for the Hamiltonian of the system 

where P2/2M is the kinetic energy of an ion, I = 1, 2 ,  . . . , N characterises the chain 
sites, (-1)l Q represents the ionic displacement at site I associated to a lattice wave 
having wavelength of twice the lattice parameter, S,(l) are the i-components of the spin 
at site 1, y is a spin-lattice coupling constant, M is the mass of magnetic ion, wo is the 
one type of mode and a is the exchange anisotropic parameter. Bond alternation is 
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controlled by A via 

Technically, we generalise an analytical non-perturbative solution for the anisotropic 
antiferromagnetic Heisenberg model, which is valid for strong antiferromagnetic order 
[3,4]. In the spirit of the adiabatic approximation (the spins respond rapidly to change 
in the ionic configuration) we can drop P2/2M in a first step. The Hamiltonian then reads 

H = Z  &&I+ y(- l )Q)(Sz(f+ l)S,(l) +;[S+(z+ l)S-(l) + S + ( I ) S - ( I +  1 4  (3) 
1 

where Q now plays the role of a parameter, J i s  the spin-spin coupling constant and S ,  = 
S, k is,. The boson-like operators [3,4] that reverse spin pairs are defined through 

where Nis the total number of sites in the chain, and k is in the Brillouin zone of one of the 
two sublattices determined by the antiferromagnetic spin alignment. The commutator 
algebra for cp, and qo can be straightforwardly calculated [3,4]. It yields a rather 
complicated relation that may be simplified to a boson algebra if one assumes the quasi- 
Ising limit (0 =s a 1) and makes the replacement 

S,(l)-. i(-l)‘. ( 5 )  

For this regime, we obtain the following commutation relations: 

With these boson-like operators, the Hamiltonian of (3) becomes 

H = Z A ( J -  rQb,+(k)cpe(k)  + ( J +  ~ Q > q L ( k ) g ? ~ ( k )  + Eo(Q) (8) 
k 

where Eo(Q)  is the ground-state energy. 
The ground state 1 G(Q)) is determined by the set of equation 

cp,(k)lG(Q)) = vo(k)IG(Q)) = 0 (9) 

whose solution [3,4] is 
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where IX) is the NCel state, which assigns the spins up to the sites of even 1. The ground- 
state energy Eo(Q) obtained by &lG(Q)) = Eo(Q)IG(Q)) is 

Thus when J > y Q ,  the contribution of the spin-lattice coupling to the ground-state 
energy has a maximum at Q = Q,. Retaining terms only up to second order in Q ,  
equation (1 1) becomes 

where 

and the dimerised energy 

Hence, the spin-lattice interaction softens the lattice mode which has wavelength of 
twice the interatomic distance and the lattice configuration has a spontaneously dimer- 
ised structure under the condition A # 1. The ground state is unstable in the extreme 
case when M u g  < a2(A + 1/A)y2/J. 

Let us now concentrate on the more likely situation, in which the elastic energy 
is larger than the magnetic energy gained from dimerising the system ( M u ;  > 
a2(A + l / A ) y 2 / J )  and investigate the influence of the system temperature T.  The 
energy of an excited state of the Hamiltonian (3) reads 

---I E ( Q )  - 2 ( A  + l/A)J + aQ2[MwZ, - a2(A + 1/A)y2/J] - [ga2(1/A - A) 
N 

where n,(k) and n,(k) are the occupation numbers of the bosonic excitations as given 
by the following equations: 

When PyQ 6 1, retaining terms only up to second order in Q ,  we find the dispersion 
relation from (15) 
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t Figure 1. Three-phase diagram. Reduced critical 

Thelatticestabilitylimitisdeterminedbpsettingp = Pc= l/k,Tc, cc) = Ointheexpression 
for the lowest-lying renormalised phonon. Let x = J/kBT; the critical temperature T, 
from (17) is then given by 

f(x,, A) = g(b,  a, 2,) (19) 

where 

f ( x ,  A) = (c1/D1)(c2/cl - D2/Dl)x -X2(A1/B1)(A3/A1 - B3/B1 

-A,B,/AlBI + B2/2B:) (20a) 
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ib,, Figure 2. Three-phase diagram. Reduced critical 

temperature T, ( J / k , )  as a function of relative 
intensity of the spin-lattice coupling b at a fixed 
value ofA = 0.3 and an anisotropic parameter a = 
0.1. Reduced tri-critical point T,,, = 6.813 at b,  = 
0.4415. Phase I is the spontaneously dimerised 
phase. Phase I1 is the spin-Peierls dimerised 
phase. Phase I11 is the dimerised disordered 
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b phase. 

g(b ,  a/, A) = b - a2(A + l/A) (20b) 

b = Mo’OJ/y2 .  (20c) 

Here, b is called the relative intensity of spin-lattice coupling. b decreases with increasing 
spin-lattice coupling y and satisfies the relation b 3 a2(A + 1/A) under the condition 
M w ~  2 a2(A + l/A)r2/J, and thus the function g(b,  a, A )  is always positive. 

Equation (19) is studied numerically. In the case where A = 1, there is no spontaneous 
dimerisation in the ground state because Q, = 0. The function f ( x ,  A = 1) is negative 
for an arbitrary value of x and there is no solution of (19) because the function g(b,  a ,  A) 
is positive. It shows that there is no spin-Peierls phase transition at finite temperature 
[2]. This result was not demonstrated in [3]. We now reduce the value of A and study 
(19) at an anisotropic parameter a = 0.1 and find that the phase transitions take place 
only under the condition of relative small values of A and b. For example, phase 
transitions occur only at 0 s A s A, = 0.313 at a fixed value of b = 0.4, or for 
0.0363 6 b 6 b, = 0.4415 at a fixed value of A = 0.3, which is illustrated in figure 1 and 
figure 2. In the phase diagrams (see figure 1 and figure 2), when the temperature T of 
the system increases to the critical temperature T,, a spin-Peierls phase transition 
[2] takes place, and phase I1 is the so-called spin-Peierls dimerised phase. As the 
temperature continues to increase, at the critical temperature Tc2 another phase tran- 
sition takes place, and phase I11 may be a dimerised disorder phase [ 5 ] .  Phase I is a 
spontaneously dimerised phase. As A >  A, at fixed b = 0.4 or b > b, at fixed A = 0.3, 
there is no spin-Peierls phase transition at finite temperature and the critical points 
(A,, T,) and (b,, T,) are the so-called tri-critical points. The interaction difference 
between nearest bonds (degree of staggered interaction) is 

A J =  (1 - A ) J  + (1 + A ) y Q  (21) 
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where A J increases with decreasing A (large bond alternation) and increases with 
increasing y (strong spin-lattice coupling). We can see that phase transitions take place 
when AJ becomes large. That is to say, more staggered interaction make the system 
easily able to undergo phase transitions, and the bond alternation is a necessary factor. 

The three-phase diagram is meaningful when the approximation method used to 
diagonalise the anisotropic Heisenberg Hamiltonian with coupling coefficient depending 
on the lattice configuration is extended to two- and three-dimensional systems. It is well 
known that, for small enough 6, La2Cu04-6 exhibits three-dimensional 
antiferromagnetic order [6]. The NCel temperature TN may be as high as TN = 240 K,  
but decreases rapidly with oxygen deficiency 6. However, long-ranged two-dimensional 
antiferromagnetic correlations in C u 0 2  planes characteristic of these layered perovskites 
do survive for temperatures well above TN [7]. It is not yet clear how the two-dimensional 
antiferromagnetic order is affected by 6, but indirect evidence has been provided 
concerning its connection with the tetragonal-to-orthorhomic-structure phase transition 
[8]. Neutron scattering experiments on the closely related compound La2Ni04+6, also 
a layered perovskite, show that for 6 = 0.05 the three-dimensional antiferromagnetic 
order sets in at TN = 70 K and the tetragonal-to-orthorhombic-structure phase transition 
takes place at T, = 240 K. Strong two-dimensional antiferromagnetic correlations are 
observed for TN S T s T,, but the correlation length is drastically reduced [8] when the 
temperature exceeds T,. If one thinks the bond alternation parameter A and spin-lattice 
coupling y in our model might depend strongly on the oxygen deficiency 6 (or the dopant 
concentration), our physical picture might provide some enlightenment on the high-T, 
superconductivity. 

In conclusion, we have studied the highly anisotropic spin-Heisenberg chain using 
the coherent-state method for spin. The three-phase diagram and the tri-critical point are 
obtained under the condition of strong spin-lattice coupling and large bond alternation, 
namely the large staggered-interaction condition. This is our main physical result. The 
detailed properties of the three phases are open problems and need to be further 
investigated. 

This work has been supported by the Foundation of Doctoral Education. 
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